11,263 research outputs found

    Evaluation of A Resilience Embedded System Using Probabilistic Model-Checking

    Full text link
    If a Micro Processor Unit (MPU) receives an external electric signal as noise, the system function will freeze or malfunction easily. A new resilience strategy is implemented in order to reset the MPU automatically and stop the MPU from freezing or malfunctioning. The technique is useful for embedded systems which work in non-human environments. However, evaluating resilience strategies is difficult because their effectiveness depends on numerous, complex, interacting factors. In this paper, we use probabilistic model checking to evaluate the embedded systems installed with the above mentioned new resilience strategy. Qualitative evaluations are implemented with 6 PCTL formulas, and quantitative evaluations use two kinds of evaluation. One is system failure reduction, and the other is ADT (Average Down Time), the industry standard. Our work demonstrates the benefits brought by the resilience strategy. Experimental results indicate that our evaluation is cost-effective and reliable.Comment: In Proceedings ESSS 2014, arXiv:1405.055

    Functional linear regression analysis for longitudinal data

    Full text link
    We propose nonparametric methods for functional linear regression which are designed for sparse longitudinal data, where both the predictor and response are functions of a covariate such as time. Predictor and response processes have smooth random trajectories, and the data consist of a small number of noisy repeated measurements made at irregular times for a sample of subjects. In longitudinal studies, the number of repeated measurements per subject is often small and may be modeled as a discrete random number and, accordingly, only a finite and asymptotically nonincreasing number of measurements are available for each subject or experimental unit. We propose a functional regression approach for this situation, using functional principal component analysis, where we estimate the functional principal component scores through conditional expectations. This allows the prediction of an unobserved response trajectory from sparse measurements of a predictor trajectory. The resulting technique is flexible and allows for different patterns regarding the timing of the measurements obtained for predictor and response trajectories. Asymptotic properties for a sample of nn subjects are investigated under mild conditions, as n→∞n\to \infty, and we obtain consistent estimation for the regression function. Besides convergence results for the components of functional linear regression, such as the regression parameter function, we construct asymptotic pointwise confidence bands for the predicted trajectories. A functional coefficient of determination as a measure of the variance explained by the functional regression model is introduced, extending the standard R2R^2 to the functional case. The proposed methods are illustrated with a simulation study, longitudinal primary biliary liver cirrhosis data and an analysis of the longitudinal relationship between blood pressure and body mass index.Comment: Published at http://dx.doi.org/10.1214/009053605000000660 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Topological semimetals with Riemann surface states

    Get PDF
    Riemann surfaces are geometric constructions in complex analysis that may represent multi-valued holomorphic functions using multiple sheets of the complex plane. We show that the energy dispersion of surface states in topological semimetals can be represented by Riemann surfaces generated by holomorphic functions in the two-dimensional momentum space, whose constant height contours correspond to Fermi arcs. This correspondence is demonstrated in the recently discovered Weyl semimetals and leads us to predict new types of topological semimetals, whose surface states are represented by double- and quad-helicoid Riemann surfaces. The intersection of multiple helicoids, or the branch cut of the generating function, appears on high-symmetry lines in the surface Brillouin zone, where surface states are guaranteed to be doubly degenerate by a glide reflection symmetry. We predict the heterostructure superlattice [(SrIrO3_3)2_2(CaIrO3_3)2_2] to be a topological semimetal with double-helicoid Riemann surface states.Comment: Four pages, four figures and two pages of appendice

    Infrared-Improved Soft-wall AdS/QCD Model for Mesons

    Full text link
    We construct and investigate an infrared-improved soft-wall AdS/QCD model for mesons. Both linear confinement and chiral symmetry breaking of low energy QCD are well characterized in such an infrared-improved soft-wall AdS/QCD model. The model enables us to obtain a more consistent numerical prediction for the mass spectra of resonance scalar, pseudoscalar, vector and axial-vector mesons. In particular, the predicted mass for the lightest ground state scalar meson shows a good agreement with the experimental data. The model also provides a remarkable check for the Gell-Mann-Oakes-Renner relation and a sensible result for the space-like pion form factor.Comment: 15 pages, 4 figures, 7 tables, published versio
    • …
    corecore